Supplement C—
Welder
Performance
Qualification
Sheet Metal Test
Requirements

American Welding Society

Welder Performance Qualification Sheet Metal Test Requirements

Developed by AWS Qualification and Certification Committee

Under the Direction of AWS Education and Certification Council

Approved by AWS Board of Directors April 4, 1994

Abstract

This Supplement C to AWS Standard QC7, Standard for AWS Certified Welder Program, describes testing administrated by Accredited Test Facilities to the requirements of AWS QC4-89, Standard for Accreditation of Test Facilities for AWS Certified Welder Program. The welder performance testing for this Supplement was developed using ANSI/AWS D9.1, Sheet Metal Welding Code, as reference.

Statement on Use of AWS Standards

All standards (codes, specifications, recommended practices, methods, classifications, and guides) of the American Welding Society are voluntary consensus standards that have been developed in accordance with the rules of the American National Standards Institute. When AWS standards are either incorporated in, or made part of, documents that are included in federal or state laws and regulations, or the regulations of other governmental bodies, their provisions carry the full legal authority of the statute. In such cases, any changes in those AWS standards must be approved by the governmental body having statutory jurisdiction before they can become a part of those laws and regulations. In all cases, these standards carry the full legal authority of the contract or other document that invokes the AWS standards. Where this contractual relationship exists, changes in or deviations from requirements of an AWS standard must be by agreement between the contracting parties.

International Standard Book Number: 0-87171-445-0

American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126

© 1994 by American Welding Society. All rights reserved
Printed in the United States of America

Note: The primary purpose of AWS is to serve and benefit its members. To this end, AWS provides a forum for the exchange, consideration, and discussion of ideas and proposals that are relevant to the welding industry and the consensus of which forms the basis for these standards. By providing such a forum, AWS does not assume any duties to which a user of these standards may be required to adhere. By publishing this standard, the American Welding Society does not insure anyone using the information it contains against any liability arising from that use. Publication of a standard by the American Welding Society does not carry with it any right to make, use, or sell any patented items. Users of the information in this standard should make an independent, substantiating investigation of the validity of that information for their particular use and the patent status of any item referred to herein.

With regard to technical inquiries made concerning AWS standards, oral opinions on AWS standards may be rendered. However, such opinions represent only the personal opinions of the particular individuals giving them. These individuals do not speak on behalf of AWS, nor do these oral opinions constitute official or unofficial opinions or interpretations of AWS. In addition, oral opinions are informal and should not be used as a substitute for an official interpretation.

This standard is subject to revision at any time by the AWS Qualification and Certification Committee. It must be reviewed every five years and if not revised, it must be either reapproved or withdrawn. Comments (recommendations, additions, or deletions) and any pertinent data that may be of use in improving this standard are requested and should be addressed to AWS Headquarters. Such comments will receive careful consideration by the AWS Qualification and Certification Committee and the author of the comments will be informed of the Committee's response to the comments. Guests are invited to attend all meetings of the AWS Qualification and Certification Committee to express their comments verbally. Procedures for appeal of an adverse decision concerning all such comments are provided in the Rules of Operation of the Qualification and Certification Committee. A copy of these Rules can be obtained from the American Welding Society, 550 N.W. LeJeune Road, Miami, Florida 33126.

Personnel

AWS Committee on Qualification and Certification

C. E. Barrero Ch.	Out Bide New Lateran
C. E. Pepper, Chairman	Oak Ridge Nat'l Laboratory
R. K. Wiswesser, 1st Vice Chairman	Welder Training and Testing Institute
J. F. Harris, 2nd Vice Chairman	Centerior Energy
L. P. Connor, Secretary	American Welding Society
E. M. Beck *	Law Engineering Incorporated
W. F. Behnke	Ford Motor Company/Sterling Plant
E. R. Bohnart	Miller Electric Manufacturing Company
H. Chapman	Consultant
H. F. Clark II	Fluor Daniel, Incorporated
A. L. Collin*	Consulting Engineer
P. R. Evans	B&W Nuclear Technologies
H. W. Goser	Stupp Brothers Bridge and Iron Company
W. L. Green*	Retired, Ohio State University
J. E. Greer	Moraine Valley Community College
M. L. Houle*	Consultant
W. H. Kennedy	Canadian Welding Bureau
R. E. Long	Consultant
S. P. Martin	General Dynamics Land Systems
R. D. Messer	Exxon Chemical
A. L. Petroski	Valmet Paper Machinery
R. R. Picard	ASEA Brown Boveri
S. L. Raymond	National Training Fund/Sheet Metal Workers
T. Schlafly *	AISC
S. W. Scott*	Westinghouse Hanford Company
R. M. Simons*	Washington Public Supply System
W. F. Urbick*	Welding Management Consultants
R. F. Waite	Consultant
F. G. DeLaurier, Ex-Officio	American Welding Society
L. G. Kvidahl. Ex-Officio	American Welding Society President
R. J. Dybas, Ex-Officio	General Electric
J. C. Papritan, Ex-Officio	Ohio State University
•	•

^{*}Advisor

AWS Subcommittee on Certification of Welders/Welding Operators

R. K. Wiswesser, Chairman Welder Training and Testing Institute J. H. Balch National Pipeline Welding School H. Chapman Consultant H. F. Clark, II Fluor Daniel Incorporated A. L. Collin* Consulting Engineer United States Air Force D. H. Delk P. R. Evans **B&W** Nuclear Technologies H. W. Goser Stupp Brothers Bridge and Iron Company R. L. Harris* Consultant Consultant R. E. Long R. D. Messer Exxon Chemical J. S. Pawluk* Western Nevada Community College C. E. Pepper Oak Ridge National Laboratory A. L. Petroski Valmet Paper Machinery L. C. Pratt Ingalls Shipbuilding National Training Fund/Sheet Metal Workers S. L. Raymond M. L. Slaton* The Pritchard Corporation L. D. Smith Beloit Corporation/Paper Machinery Division W. E. Strate Strate Welding Supply Company W. F. Urbick Welding Management Consultants

^{*}Advisor

Foreword

(This Foreword is not a part of Supplement C to AWS QC7-93, Standard for AWS Certified Welders, but is included only for information.)

The American Welding Society (AWS) Certified Welder Program is established to identify all elements necessary to implement a National Registry of Certified Welders. Four key elements are identified:

- (1) Welder performance qualification standards
- (2) Standard welding procedure specifications
- (3) Accredited performance qualification test facilities
- (4) AWS welder certification requirements

Supplement C, Welder Performance Qualification Sheet Metal Test Requirements and AWS QC7-93, Standard for AWS Certified Welders, contain the criteria for AWS Certified Welder Program and the AWS National Registry of Welders. Public listing or disclosure is at the option of the individual welder. It is expected that all four elements outlined above will allow the transfer of welder qualification from employer to employer. This potential transfer of welder qualification can affect financial savings to the welding industry.

The purpose of the QC7-93 is to document the ability of welders to deposit sound welds in accordance with standardized requirements and to impose sufficient controls on the documentation and maintenance of certification to allow transfer between employers without requalification, where allowed by Standard or Contract documents.

Supplement C shall be used in conjunction with AWS QC7-93. This Supplement C is not a standard unto itself and shall be considered only as a supplementary part of AWS QC7-93. The intent of this supplement is to provide welder performance test data to the industry that all employers may use without retesting each welder.

This supplement does not apply to employers that conduct welder qualification tests for their own employees in accordance with ANSI/AWS D9.1, Sheet Metal Welding Code. Supplement C to AWS QC7-93 specifies requirements intended to provide an alternative welders certification method to comply with the requirements of ANSI/AWS D9.1.

Table of Contents

		Page I
Pers	sonnel	iii
Fore	eword	v
Cl	Scope	1
C1.	C1.1 Program	
	C1.2 Exclusion	
	C1.3 Limitation	
	C1.4 Safety Precautions	1
C2.	Definitions	1
-	D. Chillian B. All Anyold and Invest	
C3.	Responsibilities Regarding AWS Certified Welders	
	C3.1 Employer Responsibility	
	C3.2 Employer Obligation	
	C3.3 Qualification & Certification Department Responsibilities	
	C3.4 Test racinty Responsibilities	
C4.	Provisions for Testing	2
	C4.1 Welding Procedure Specification (WPS)	
	C4.2 Test Facilities	2
C5.	Certification Requisites	2
	C5.1 Test Control	
	C5.2 Test Supervisor	
	C5.3 Test Facility	2
C6	Performance Test	2
CU.	C6.1 Identification	
	C6.2 Verification	
	C6.3 Safety Equipment	
	C6.4 Machine Adjustment	
	C6.5 Material Check	
	C6.6 Fit-Up	
	C6.7 Assembly Control	2
	C6.8 Positioning	2
	C6.9 Eye Correction	3
	C6.10 Power Tools	
C7.	Examination Methods and Acceptance Standards	3
C8	Retests	3
-0.	C8.1 Immediate Retest	
	C8.2 Retest After Further Training or Practice	3
C9.	Documentation of Welder Performance Qualification	3
	·	•
c u	D. Period of Effectiveness	3

C11. Identification/Certification Documents	
C12. Maintenance of Certification	3
C13. Renewal of Certification	3
C14. Revocation	3
Forms	
QC-WF1C — Welder Qualification Test Record	4
QC-WF3A — Maintenance of Certification	
List of Performance Test Descriptions	
C-1 GMAW 18 Gauge Coated Steel	6
C-2 GMAW — 18 Gauge Coated Steel	8
C-3 GMAW — 18 Gauge Coated Steel	10
C-4 GMAW 10 Gauge Coated Steel	12
C-5 GMAW — 10 Gauge Coated Steel	14
C-6 GMAW — 10 Gauge Coated Steel	16
C-7 GMAW — 18 Gauge Stainless Steel	
C-8 GMAW — 18 Gauge Stainless Steel	20
C-9 GMAW 18 Gauge Stainless Steel	22
C-10 GMAW — 10 Gauge Stainless Steel	
C-11 GMAW — 10 Gauge Stainless Steel	
C-12 GMAW — 10 Gauge Stainless Steel	28

.

Supplement C Welder Performance Qualification Sheet Metal Test Requirements

C1. Scope

This Supplement C to AWS QC7-93, Standard for AWS Certified Welders, specifies requirements intended to provide an alternative welders certification method. The rules for performance qualification are defined in ANSI/AWS D9.1, Sheet Metal Welding Code. When the term certified welder is used it shall also denote "welding operator."

- C1.1 Program. The administrative rules for the American Welding Society (AWS) Certified Welder Program and the requirements for maintenance of certification are provided in AWS QC7-93, Standard for AWS Certified Welders. Test facilities participating in the program are required to meet AWS QC4, Standard for Accreditation of Test Facilities for AWS Certified Welder Program.
- C1.2 Exclusion. Neither AWS QC7-93 nor this Supplement C prevents or supersedes a Contractor from continuing to qualify welders in accordance with ANSI/AWS D9.1 or other standards. Employers may impose supplementary requirements in addition to this standard.
- C1.3 Limitation. Welders participating in the AWS Certified Welder Program shall be limited to those welding essential variables defined in the applicable Performance Tests Descriptions.
- C1.4 Safety Precautions. This document is not intended to address safety and health matters regarding the training of certified welders. This document only covers the rules of certification of welders to AWS QC7-93.

C2. Definitions

The terms used in this Supplement C are defined in AWS QC7-93 and ANSI/AWS A3.0, Standard Welding Terms and Definitions, except as follows:

Employer. The term is used collectively to mean contractor, fabricator, erector or manufacturer.

C3. Responsibilities Regarding AWS Certified Welders

- C3.1 Employer Responsibility. The employers of AWS Certified Welders are responsible for the work performed by their employees. The employers may accept the AWS certification without additional testing or may add requirements as deemed necessary to meet their particular need.
- C3.2 Employer Obligation. Companies who employ AWS certified welders should be fully aware of the provisions of the AWS QC7-93 standard and of this Supplement C.
- C3.2.1 Employers should specifically note the extent of qualification as stated on the AWS welder certification card.
- C3.2.2 The employer shall obtain a copy of the Performance Qualification Test Record from the AWS Qualification and Certification Department.

- C3.2.3 The welders current status shall be checked with the Qualification and Certification Department.
- C3.2.4 The employer shall maintain a record of performance for all welders during their periods of employment. The backup record to be filed with the employer's certification shall be the completed Performance Test Description and Limitation of Variables form prepared by the Accredited Test Facilities. A suggested certification record is shown in Form QC-WFC1, Welder Qualification Test Record.
- C3.2.5 The Employer is responsible for all work performed by their employees; and therefore, should verify that the qualification(s) apply to each employee's work.
- C3.2.6 The use of these qualifications may require the approval of the Engineer or Owner. The employer shall obtain such approval when required,
- C3.3 Qualification and Certification Department Responsibilities. The Qualification and Certification Department shall complete the responsibilities defined in AWS OC7-93, 3.3.
- C3.4 Test Facility Responsibilities. The Test Facility is responsible for safety and health matters during testing at that location in addition to other requirements stated herein.

C4. Provisions for Testing

- C4.1 Welding Procedure Specification (WPS). The WPSs incorporated in this Supplement C shall be used to qualify welders to this standard. The WPSs in this supplement are for qualification of welders. Production welding procedures shall be provided by employers in accordance with AWS D9.1.
- C4.2 Test Facilities. The Test Facilities for this AWS Welder Certification program shall comply with the requirements of AWS QC7-93, 4, Provisions for Testing. The Test Facility shall have been accredited according to AWS QC4, Standard for Accreditation of Test Facilities for AWS Certified Welder Program.

C5. Certification Requisites

C5.1 Test Control

- C5.1.1 Performance qualification test coupons shall be welded in accordance with a written WPS and the Performance Test Description.
- C5.1.2 Performance Test Descriptions include welding variables and define the limits of qualification for each test.

C5.2 Test Supervisor

C5.2.1 Qualification testing shall be performed under the direction of a person designated as the Test Super-

- visor in accordance with AWS QC4, Standard for Accreditation of Test Facilities for AWS Certified Welder Program.
- C5.2.2 The Test Supervisor shall be responsible for the performance qualification in accordance with this Supplement C.
- C5.2.3 If during qualification testing, the Test Supervisor determines that the welder does not exhibit the skill to perform the test satisfactorily, the test may be terminated.
- C5.2.4 The Test Supervisor may allow a welder to retest immediately or may require additional training or practice prior to retesting in accordance with C7, Retests.
- C5.2.5 The Test Supervisor shall be responsible for enforcement of test shop safety rules, procedures, and cleanliness, as established by the Test Facility QA Manual.
- C5.3 Test Facility. The Test Facility conducts the qualification tests and prepares the test reports. The American Welding Society issues the certification.

C6. Performance Test

- C6.1 Identification. The applicant shall be assigned an identification letter, symbol or number, and this identifier shall be marked on the test materials and records.
- C6.2 Verification. Prior to the initiation of welding, the applicant's photographic identification shall be verified by the Test Supervisor.
- C6.3 Safety Equipment. The applicant shall use personal safety equipment applicable for the welding process. The safety requirements of the Accredited Test Facility shall conform to the requirements of ANSI/ASC Z49.1.
- C6.4 Machine Adjustment. Before starting the qualification test, the welder shall adjust the machine settings to meet those of the WPS.
- C6.5 Material Check. The base material and filler metal identifications shall be verified by the Test Supervisor prior to tack welding.
- C6.6 Fit-Up. The applicant shall assemble the specified test assembly(ies) for welding in accordance with the WPS. The test assembly shall be verified by the Test Supervisor. The Test Supervisor shall inspect each test assembly prior to welding in accordance with AWS D9.1.
- C6.7 Assembly Control. The Test Supervisor shall witness the placing of each test assembly in the specified welding position and shall mark the test assembly, or secure it, so that it remains in the specified position until welding has been completed.
- C6.8 Positioning. All cleaning, grinding, chipping of slag or other in-process operations shall be performed

with the test assembly in the specified welding position. Evidence of removal of the test assembly or movement from the original location, except by accidental means (subject to concurrence by the Test Supervisor), shall be cause for test termination.

C6.9 Eye Correction. The Test Supervisor shall note the use of and type of eye correction on the Welder Qualification Test Record. The welder's certification card shall also reflect eye correction use.

C6.10 Power Tools. Any use, or lack of use, of power tools shall be noted on the Welding Qualification Test Record by the Test Supervisor.

C7. Examination Methods and Acceptance Standards

C7.1 All additional tests required by ANSI/AWS D9.1 shall be conducted under the supervision of the Test Supervisor.

C7.2 Visual Examination. The test plates shall meet the visual acceptance criteria for performance testing as defined in ANSI/AWS D9.1. The visual examination shall be performed by a current CWI without aid of magnification.

C8. Retests

If the welder performance test fails to meet the requirements a retest of each test failed may be allowed under the following conditions:

C8.1 Immediate Retest. No more then three immediate retests shall be permitted. The retest specimens shall meet all of the specified requirements.

C8.2 Retest after Further Training or Practice. A retest may be made, provided there is evidence that the welder has had further training or practice. A complete retest of the types and positions failed shall be made.

C9. Documentation of Welder Performance Qualification

The performance qualification data and results of the examination and testing shall be recorded on QC-WF1C. Records of applicants that meet the requirements shall be processed in accordance with AWS QC7-93.

C10. Period of Effectiveness

C10.1 The period of certification is twelve months. The period begins on the date of completion of the examina-

tion results and signature by the Test Supervisor. Thereafter, the certification shall be considered as remaining in effect indefinitely unless:

- (1) the welder is not engaged in a given welding process for which the welder is certified for a period exceeding twelve months unless otherwise specified by ANSI/AWS D9.1, or
- (2) there is some specific reason to question the welder's ability.

C10.2 Indefinite certification in accordance with C10 may be maintained by documenting the use of the welding process in accordance with C12, Maintenance of Certification.

C11. Identification/Certification Documents

The welder certification card is issued by AWS in accordance with AWS QC7-93.

C12. Maintenance of Certification

Welders may maintain their certification indefinitely by verifying the use of the welding process(es). The use of the process(es) shall be verified by the welder submitting completed forms required in AWS QC7-93, 11, Maintenance and Certification each year as a minimum. Such forms shall be postmarked prior to the expiration of certification. The certification expiration date is extended for a period of 12 months, as defined in ANSI/AWS D9.1 from the date of the last use of the process(es), as documented on Form QC-WF3A, received and accepted by the AWS Qualification and Certification Department.

After the certification period has expired, without the welder using the process, a single test need be made only in any thickness for each process in which the welder is qualified. Successful completion of such test restores all of the previous qualifications for the process tested.

C13. Renewal of Certification

Renewal of certifications shall be in accordance with AWS QC7-93, 12, Renewal of Certification.

C14. Revocation

The AWS Certification of a welder may be revoked in accordance with the administrative procedures defined in AWS QC7-93, 13, Revocation.

WELDER AND WELDING OPERATOR PERFORMANCE QUALIFICATION TEST RECORD

Qualification Test Performed

ame			WPS Number				
I.D. No			Base Metal				
Date of Test			Gauge				
Test Position				pint)			
Shield gas used			Code	ANSI/AWS D9.1			
	Yes		Performance Test Des	scription No.			
Power tools used	Yes	No					
	Essentia	ıl Variable:	s Qualified by Test				
Type of base metal			Welding process				
- ·	Min		Method of application				
_			Manual				
Uncoated Sheet	Yes _	No	Automatic	<u>-</u>			
Coating material on sheet			=	AW)			
Backing material				ac dcen dcer			
Filler metal specification							
Filler Metal Classification			Shield gas usedFlatHorizont				
			_	Vertical Overhead			
Condition			Acceptable	Unacceptable			
Complete fusion			· ·				
Complete joint penetration							
Maximum face and root reinforcem	nent — 1/8 in.						
No more than one visible pore per	in, of weld						
Maximum pore or inclusion size -	0.25 t						
where t = base metal thickness							
No undercut exceeding 0.15 t for t	less						
than or equal to 0.187 in.							
No undercut exceeding 0.25 t for t	greater		***				
than 0.187 in.							
No cracks			propagation of a secular for the second characteristic fundamental files				
Date Tested			Signed By	Test Supervisor			
Test Facility							
Test Facility No.		leaders - comments - comments de	Date Signed				

MAINTENANCE OF CERTIFICATION

Name		I.D. #
Enter date of last use of each	of the following process(es):	
SMAW	FCAW	GTAW
GMAW	SAW	Other
	stomer (circle one) Verification	ROM DATE INDICATED ABOVE n: We certify that the above named welder used the pro-
Print Name		Title
Company Name		Phone
Signature	The state of the s	Date

WE RECOMMEND SENDING "U.S. MAIL, RETURN RECEIPT REQUESTED."

Form QC-WF3A-Maintenance of Certification

AWS QC7-93 Supplement C Performance Test Description C-1 **GMAW 18 Gauge Coated Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW)

Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90

Coating Type: Galvanized

Material Form: Sheet - 3" x 6"

Thickness: 18 Gauge

Filler Metal: ANSI/AWS A5.18, Class ER-70S-X (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 4G

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-1-O

Welding Technique: Single pass

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification -

Code: ANSI/AWS D9.1

Welding Process: Gas metal arc welding (GMAW) - semiautomatic/automatic transfer mode - short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge and thinner

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide

Positions: All groove and fillet

Vertical Welding Progression: Up or down

WPS Number (C-1	Supported by PQR No.(s) WRC', 047A, 050A, 051B, 052B ²						
WPS Rev. No.	. Original WPS Rev. Date January 1994							
Code Referenc	Code Reference ANSI/AWS D9.1, Sheet Metal Welding Code							
			Variables					
Base metal AN	ISI/ASTM A5260	Q G90 or A527L	FQ G90. galvar	nized				
		516 in., 1.31 mm						
Coating type G								
		of loose scale, ru	ist, grease or fo	reign matter				
Backing materi								
Position of wel		ad	W	elding Progression	: N/A			
Welding proces								
Manual, semial	utomatic, or au	tomatic Semiaut	omatic					
Filler metal spe	c. ANSI/AWS	N5.18	·					
Filler metal clas	ss ER70S-X (F	Number 6)						
Electrical Char	acteristics dce	ρ	E	ectrode Extension	1/4 to 1/2 in.			
Mode of transfe	er Short circuit							
Shielding gas/o	combination 75	% Argon, 25% Ca	arbon dioxide					
Gas flow (CFH)	20-40 CFH							
			Joining Proce	dure				
		Welding Power						
Filler	Current	Wire Feed	Voltage	1				
Metal	Range	Speed	Range					
Size		(Reference)	95	Speed				
0.25		(,		of				
in.	Ampere	ipm	Volts	Travel	Joint Detail			
0.035	50-130	100-230	15-17	As Required				
		i						
					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
	1				- Root			
]			Opening			
					Note: Root Opening = 0-1/2t			

¹Welding Research Council, 345 East 47th Street, New York, New York 10017.

²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-2 **GMAW 18 Gauge Coated Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90 Coating Type: Galvanized Material Form: Sheet - 3" x 6" Thickness: 18 Gauge

Filler Metal: ANSI/AWS A5.18, Class ER-70S-X (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 3G

Vertical Welding Progression: Down

Welding Procedure Specification (WPS) No.: QC7-93, C-2-V

Welding Technique: Single pass

Current: dcep Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

- Limits of Welder Qualification ----

Fillet Weld Size: Unlimited

Code: ANSI/AWS D9.1

Welding Process: Gas metal arc welding (GMAW) --- semiautomatic/automatic transfer mode --- short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet Backing: With or without

Groove Weld Thickness: 16 Gauge and thinner

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide Positions: Flat, horizontal and vertical groove and fillet Vertical Welding Progression: Up or down

NPS Number	PS Number C-2 Supported by PQR No.(s) WRC1, 047A, 050A, 051B, 052B2				
WPS Rev. No.	Original			w	PS Rev. Date January 1994
Code Referenc	e ANSI/AWS D	9.1, Sheet Metal V	Velding Code		
			Variables		
Base metal AN	ISI/ASTM A5260	CQ G90 or A527LF	O G90, galvar	nized	······································
Metal thicknes	s 18 Gauge (0.0	0516 in., 1.31 mm)	·		The state of the s
Coating type 🤇	Galvanized G90			**************************************	
Joint preparati	on Shall be free	of loose scale, ru	st, grease or fo	oreign matter	
Backing mater	ial None				· · · · · · · · · · · · · · · · · · ·
Position of we	lding 3G Vertica	ıl	W	elding Progression	: Down
Welding proce	ss GMAW			····	****
Manual, semia	utomatic, or au	tomatic Semiauto	omatic		
Filler metal spe	ec. ANSI/AWS	<u> 45.18</u>			
Filler metal cla	ss dcep			· · · · · · · · · · · · · · · · · · ·	
Electrical Char	racteristics dce	<u>p</u>	EI	ectrode Extension	1/4 to 1/2 in.
Mode of transf	er Short circuit				
Shielding gas/	combination_75	5% Argon, 25% Ca	arbon dioxide		
Gas flow (CFH) 20-40 CFH				
			Joining Proce	dure	T
		Welding Power			
Filler	Current	Wire Feed	Voltage		
Metal	Range	Speed	Range		
Size	, larige	(Reference)	, id. igo	Speed	
0.20	İ	(of	
in.	Ampere	ipm	Volts	Travel	Joint Detail
0.035	50-130	100-230	15-17	As Required	
					5 18 ga.
					harmonial harmonial allocation
	: · !				Root Opening
	;				Opermig
					Note: Boot Opening = 0-1/2t

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-3 **GMAW Coated Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW)

Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90

Coating Type: Galvanized

Material Form: Sheet - 3" x 6"

Thickness: 18 Gauge

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 1G

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-3-F

Welding Technique: Single pass

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: Gas metal arc welding (GMAW) -- semiautomatic/automatic transfer mode -- short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without Fillet Weld Size: Unlimited

Groove Weld Thickness: 16 Gauge and thinner

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep

Positions: Flat groove and fillet

Shielding Gas: 75% Argon, 25% Carbon dioxide Vertical Welding Progression: Not applicable

WPS Number	C-3	Supported by	PQR No.(s) V	VRC1, 047A, 050A,	051B, 052B°
WPS Rev. No.	Original			V	/PS Rev. Date January 1994
Code Reference	e ANSI/AWS D	9.1, Sheet Metal V	Velding Code		
			Variables		
Bass motel All	HOUACTNA AFOCA	CO GDO or A5071 8	EO COO estues	i	
		CQ G90 or A527Li 0516 in., 1.31 mm)		1260	
	Galvanized G90	70 (0 ii., 1.0) iiiii)			
		of loose scale, ru	et orease or fo	reion matter	
Backing mater		, 0. 10000 30a10, 10	ioi, grouse or re		
Position of we			W	elding Progression	n. N/A
Welding proce					
		tomatic Semiauto	omatic		
	ec. ANSI/AWS				
Filler metal cla					
Electrical Chai	racteristics dce	ρ	Ele	ectrode Extension	1/4 to 1/2 in.
Mode of transf	er Short circuit				
Shielding gas/	combination 75	5% Argon, 25% Ca	arbon dioxide		
Gas flow (CFH) 20-40 CFH			·	
			Joining Proced	dure	
		Welding Power			
Filler	Current	Wire Feed	Voltage		
Metal	Range	Speed	Voltage Range		
Size	nange	(Reference)	narige	Speed	
Size		(Helefelice)		of	
in.	Ampere	ipm	Volts	Travel	Joint Detail
	50-130	100-230	15–17		
0.035	50-130	100-230	15-17	As Required	
	(18 ga.
					→
					Opening
į.		1		Ì	Note: Boot Opening = 0-1/2t

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-4 **GMAW Coated Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW)

Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90

Coating Type: Galvanized

Material Form: Sheet - 3" x 6"

Thickness: 10 Gauge

Filler Metal: ANSI/AWS A5.18, Class ER-70S-X (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 4G

Vertical Weiding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-4-O

Welding Technique: Single pass

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: Gas metal arc welding (GMAW) — semiautomatic/automatic transfer mode — short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge to 0.276 in.

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep

Shielding Gas: 75% Argon, 25% Carbon dioxide

Positions: All groove and fillet

Vertical Welding Progression: Up or down

WPS Number	PS Number C-4 Supported by PQR No.(s) WRC1, 048A, 049A, 053A, 054B, 055B2					
WPS Rev. No.	Original				/PS Rev. Date January 1994	
		_				
Code Reference	ce <u>ansi/aws d</u>	9.1, Sheet Metal V	Welding Code			
			Variables			
		CQ G90 or A527LI		nized		
		1382 in., 3.51 mm	}			
	Galvanized G90					
		of loose scale, ru	ist, grease or fo	oreign matter		
Backing mater			····			
	iding 4G Overhe	ead	W	eiding Progression	ı: <u>N/A</u>	
Welding proce						
·		tomatic Semiauto	omatic			
•	ec. <u>ANSI/AWS /</u>	A5.18				
Filler metal cla						
	racteristics dce	p	EI	ectrode Extension	1/4 to 1/2 irı.	
	fer Short circuit		·			
		5% Argon, 25% Ca	arbon dioxide			
Gas flow (CFH) <u>20-40 CFH</u>		·····			
			Joining Proce	dure		
	1			T		
		Welding Power				
Filler	Current	Wire Feed	Voltage			
Metai	Range	Speed	Range			
Size		(Reference)		Speed		
		'		of		
in.	Ampere	ipm	Volts	Travel	Joint Detail	
0.035	75–150	120-280	18-20	As Required		
					5 10 ga.	
					→ Root	
					Opening	
					1	
					Note: Root Opening = 0-1/2t	

^{&#}x27;Welding Research Council, 345 East 47th Street, New York, New York 10017.

²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-5 GMAW Coated Steel

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90 Coating Type: Galvanized Material Form: Sheet — 3" x 6" Thickness: 10 Gauge

Filler Metal: ANSI/AWS A5.18, Class ER-70S-X (F Number 6)

Weld Joint Detail: square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Weiding Position(s): 3G

Vertical Welding Progression: Down

Welding Procedure Specification (WPS) No.: QC7-93, C-5-V

Welding Technique: Single pass

Current: dcep Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: Gas metal arc welding (GMAW) — semiautomatic/Automatic transfer mode — short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet

Groove Weld Thickness: 16 Gauge to 0.276 in.

Backing: With or without

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep Shielding Gas: 75% Argon, 25% Carbon dioxide
Positions: Flat, horizontal and vertical groove and fillet Vertical Welding Progression: Up or down

WPS Number	C-5	Supported by	PQR No.(s) V	VRC', 048A, 049A, 0	053A, 054B, 055B ²
WPS Rev. No.	Original			W	PS Rev. Date January 1994
Code Befores	- ANGUAWE D	0.1 Shoot Matel V	Volding Codo		
Code Referenc	B ANGIANG D	9.1, Sheet Metal V	veiding Code		
			Variables		
Base metal Ah	ISI/ASTM A5260	CQ G90 or A527LF	Q G90, galvan	ized	
		1382 in., 1.31 mm)			
Coating type	Galvanized G90				
Joint preparati	on Shall be free	of loose scale, ru	st, grease or fo	reign matter	
Backing mater	ial None				
Position of we	lding 3G Vertica	1	We	eiding Progression	: Down
Welding proce	ss GMAW				
Manual, semia	utomatic, or au	tomatic Semiauto	omatic		
Filler metal spe	BC. ANSI/AWS	A5.18			
Filler metal cla	ss ER70S-X				
Electrical Char	acteristics dce	ρ	Ei	ectrode Extension	1/4 to 1/2 in
Mode of transf	er Short circuit				
Shielding gas/	combination <u>75</u>	5% Argon, 25% Ca	arbon dioxide		
Gas flow (CFH) <u>20-40 CFH</u>				
			Joining Proced	dure	
		Welding Power			
Filler	Current	Wire Feed	Voltage		
Metal	Range	Speed	Range		
Size		(Reference)		Speed	
		,		of	
in.	Ampere	ipm	Volts	Travel	Joint Detail
0.035	75–150	120-280	18-20	As Required	
					5 7 10 ga.
					Opening
		1			
					Note: Root Opening ≈ 0-1/2t

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-6 **GMAW Coated Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A526 CQ G90 or A527 LFQ G90 Coating Type: Galvanized Material Form: Sheet - 3" x 6" Thickness: 10 Gauge

Filler Metal: ANSI/AWS A5.18, Class ER-70S-X (F Number 6)

Weld Joint Detail: square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 1G

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-6-F

Welding Technique: Single pass

Current: dcep Shielding Gas: 75% Argon, 25% Carbon dioxide

Electrode Extension: 1/4 to 1/2 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Backing: With or Without

Fillet Weld Size: Unlimited

Code: ANSI/AWS D9.1

Welding Process: Gas Metal Arc Welding (GMAW) -- semiautomatic/automatic transfer mode -- short circuiting

Base Metal: Galvanized or uncoated carbon steel (See ANSI/AWS D9.1)

Material Form: Sheet

Groove Weld Thickness: 16 Gauge to 0.276 in.

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.18, (F Number 6)

Current: dcep Shielding Gas: 75% Argon, 25% Carbon dioxide Positions: Flat groove and fillet Vertical Welding Progression: Not applicable

Note: Root Opening = 0-1/2t

WPS Number	C-6	Supported by PQR No.(s) WRC1, 048A, 049A, 053A, 054B, 055B2				
WPS Rev. No.	Original	WPS Rev. Date January 1994				
Code Referenc	e ANSI/AWS DE	3.1, Sheet Metal \	Welding Code			
			Variables			
Base metal AN	ISI/ASTM A5260	Q G90 or A527L	FQ G90, galvan	ized		
		382 in., 3.51 mm				
Coating type (
Joint preparati	on Shall be free	of loose scale, ru	ust, grease or fo	reign matter		
Backing mater	ial None					
Position of wel	ding 1G Flat		Wo	elding Progression	: N/A	
Welding proce	ss GMAW					
Manual, semia	utomatic, or aut	tomatic <u>Semiaut</u>	omatic			
Filler metal spe	ec. <u>Ansi/Aws A</u>	<u> </u>				
Filler metal cla	ss ER70S-X					
Electrical Char	acteristics dce	ρ	Ele	ectrode Extension	1/4 to 1/2 in.	
Mode of transf	er Short circuit		 			
Shielding gas/	combination 75	% Argon, 25% C	arbon dioxide			
Gas flow (CFH)	20-40 CFH		· · · · · · · · · · · · · · · · · · ·			
			Joining Proced	dure		
		Welding Power				
Filler	Current	Wire Feed	Voltage			
Metal	Range	Speed	Range	Coood		
Size		(Reference)		Speed of		
l in	Amnoro	iom	Volts	Travel	Joint Detail	
in.	Ampere	ipm			John Detail	
0.035	75-150	120-280	18–20	As Required		
1	1					
	Í	1			10 ga.	
	1				Root	
					Opening	

¹Welding Research Council, 345 East 47th Street, New York, New York 10017.
²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-7 GMAW Stainless Steel

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW)

Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240, Type 3xx

Coating Type: None

Material Form: Sheet - 3" x 6"

Thickness: 18 Gauge

Filler Metal: ANSI/AWS A5.9, Class ER-3xx (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 4G

Vertical Weiding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-7-O

Welding Technique: Single pass

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) — semiautomatic/automatic transfer mode — short circuiting

Base Metal: Chromium and chromium nickel steel (uncoated) (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge and thinner

Backing: With or without Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filter #4-4-1. ANCHAIMP AS D. /F No. -----

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Positions: All groove and fillet Vertical Welding Progression: Up or down

WPS Number 9	D-7	_ Supported by	PQR No.(s) V	VRC1, 068A, 070A, 0	74A, 075B, 076A
WPS Rev. No.	Original			w	PS Rev. Date January 1994
Code Reference	e ANSI/AWS D	9.1, Sheet Metal V	Velding Code		
			Variables		
Base metal AN	SI/ASTM A167	or A240 type 3XX			
		500 in., 1.27 mm)			
Coating type N	lone				
Joint preparation	on Shall be free	of loose scale, ru	st, grease or fo	oreign matter	
Backing materi	al None				
Position of wel	ding 4G Overhe	ad	w	elding Progression	: N/A
Welding proces	ss GMAW				
Manual, semiau	utomatic, or au	tomatic Semiauto	omatic		
Filler metal spe	c. ANSI/AWS	\5.9			
Filler metal clas	ss ER-3XX				
Electrical Char	acteristics dce	ρ	El-	ectrode Extension	1/4 to 3/8 in.
Mode of transfe	er Short circuit	·· ······························			
Shielding gas/o	combination 90)% Helium, 7.5% /	Argon, 2.5% Ca	arbon dioxide	
Gas flow (CFH)	20-40 CFH			-	
		•	Joining Proce	dure	
		Welding Power	· · · · · · · · · · · · · · · · · · ·		
			N. 1. 1.		
Filler	Current	Wire Feed	Voltage		
Metal Size	Range	Speed	Range	Sanad	
Size		(Reference)		Speed	
in.	Ampere	ipm	Volts	Travel	Joint Detail
<u> </u>		ļ		ļ	John Detail
0.035	60-100	120–210	16–19	As Required	
					\[\frac{18ga.}{}
					→ Aoot
					Opening
					Note: Root Opening = 0-1/2t

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-8 GMAW Stainless Steel

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW)

Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240, Type 3XX

Coating Type: None

Material Form: Sheet -- 3" x 6"

Thickness: 18 Gauge

Filler Metal: ANSI/AWS A5.9. Class ER-3XX (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 2G

Vertical Welding Progression: Down

Welding Procedure Specification (WPS) No.: QC7-93, C-8-V

Welding Technique: Single pass

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification -

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) -- semiautomatic/automatic transfer mode -- Short circuiting

Base Metal: Chromium and chromium nickel steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge and thinner

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxid

Positions: Flat, horizontal and vertical groove and fillet

Vertical Welding Progression: Up or Down

Variables Base metal ANSI/ASTM A167 or A240 Type 3XX Metal thickness 18 Gauge (0.0500 in., 1.27 mm)
Variables Base metal ANSI/ASTM A167 or A240 Type 3XX Metal thickness 18 Gauge (0.0500 in., 1.27 mm) Coating type None
Base metal ANSI/ASTM A167 or A240 Type 3XX Metal thickness 18 Gauge (0.0500 in., 1.27 mm)
Base metal ANSI/ASTM A167 or A240 Type 3XX Metal thickness 18 Gauge (0.0500 in., 1.27 mm)
letal thickness 18 Gauge (0.0500 in., 1.27 mm)
Coating type None
9 17
oint preparation Shall be free of loose scale, rust, grease or foreign matter
Backing material None
Position of welding <u>3G Vertical</u> Welding Progression: <u>Down</u>
Velding process GMAW
Manual, semiautomatic, or automatic Semiautomatic
Filler metal spec. ANSI/AWS A5.9
Filler metal class ER-3XX
Electrical Characteristics dcep Electrode Extension 1/4 to 3/8 iri.
Node of transfer Short circuit
Shielding gas/combination 90% Helium, 7.5% Argon, 2.5% Carbon dioxide
Gas flow (CFH): 20–40 CFH
Joining Procedure
Welding Power
Filler Current Wire Feed Voltage
Metal Range Speed Range
Size (Reference) Speed
of
in. Ampere ipm Volts Travel Joint Detail
0.035 60-100 120-210 16-19 As Required
1 1000
→ → Root
→ → Root Opening

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C **Performance Test Description C-9 GMAW Stainless Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240 Type 3XX

Coating Type: None Thickness: 18 Gauge

Material Form: Sheet - 3" x 6"

Filler Metal: ANSI/AWS A5.9, Class ER-3XX (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 1G

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-9-F

Welding Technique: Single pass

Current: dcep Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per ANSI/AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) --- semiautomatic/automatic transfer mode --- short circuiting

Base Metal: Chromium to chromium nickel steel (uncoated) (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge and thinner

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Current: dcep Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Positions: Flat groove and fillet Vertical Welding Progression: Not applicable

WPS Number	PS Number C-9 Supported by PQR No.(s) WRC¹, 068A, 070A, 074A, 075A, 076A²								
WPS Rev. No.	Original			W	PS Rev. Date <u>Ja</u>	nuary 1994			
Code Reference ANSI/AWS D9.1, Sheet Metal Welding Code									
Variables									
Base metal Al	NSI/ASTM A167	or A240 Type 3XX	(···			
Metal thickness	s 18 Gauge (0.0	0500 in., 1.27 mm)	<u> </u>						
Coating type	None								
Joint preparat	ion Shall be free	e of loose scale, ru	ist, grease or fo	oreign matter					
Backing mater	rial None								
Position of we	Position of welding 1G Flat Welding Progression: N/A								
Welding proce	-		·			- 			
		tomatic Semiauto	omatic						
•	ec. <u>ANSI/AWS</u>	A5.9							
Filler metal cla									
	racteristics dce	р	Ei	ectrode Extension	1/4 to 3/8 in.				
	er Short circuit					_ 			
-		0% Helium, 7.5%	Argon, 2.5% Ca	irbon dioxide					
Gas flow (CFH) 20-40 CFH								
			Joining Proce	dure					
	Welding Power								
Filler	Current	Wire Feed	Voltage	1					
Metai	Range	Speed	Range						
Size	liungo	(Reference)	· idinge	Speed					
		(of					
in.	Ampere	ipm	Volts	Travel	Join	t Detail			
0.035	60-100	120-210	16-19	As Required					
					5	₹ 18 ga.			
					1 1 1	Root Opening			
						- n - 1g			
					Note: Boot O	nenina = 0-1/2t			

Welding Research Council, 345 East 47th Street, New York, New York 10017.

²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7 Supplement C Performance Test Description C-10 **GMAW Stainless Steel**

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240 Type 3XX

Coating Type: None

Material Form: Sheet - 3" x 6"

Thickness: 10 Gauge

Filler Metal: ANSI/AWS A5.9, Class ER-3XX (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 4G

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-10-O

Welding Technique: Single pass

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) — semiautomatic/automatic transfer mode — short circuiting

Base Metal: Chromium and chromium nickel steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge to 0.281 in.

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Positions: All groove and fillet Vertical Welding Progression: Up or Down

WPS Number		Supported by	POH NO(S) W		073A, 077A, 078A, 079A
WPS Rev. No.	Original		······································		WPS Rev. Date January 1994
Code Referen	CE ANSI/AWS D	9.1, Sheet Metal V	Velding Code		
Code Hereren	CC ANDVANSO	5.1, Officer Wetar V	veiding odde		
			Variables		
Base metal Al	NSVASTM A167	or A240, Type 3X	×		
		1406 in., 2.57 mm	· · · · · · · · · · · · · · · · · · ·		
Coating type		7,00, 2.0,	· · · · · · · · · · · · · · · · · · ·		
• • •		e of loose scale, ru	ist, grease or fo	reign matter	
Backing mate					
-	elding 4G Overh	ead	W	elding Progressio	n: N/A
Welding proce					
- ·	· · · · · · · · · · · · · · · · · · ·	tomatic Semiauto	omatic		
	ec. ANSI/AWS				
Filler metal cli	ass ER3XX				
Electrical Cha	racteristics des	p	E	ectrode Extension	1/4 to 3/8 in.
Mode of trans	fer Short circuit				
Shielding gas	/combination_90	0% Helium, 7.5%	Argon, 2.5% Ca	rbon dioxide	
Gas flow (CFF	1) 20-40 CFH				
			Joining Proce	dure	
		Welding Power			
Filler	Current	Wire Feed	Voltage]	
Metal	Range	Speed	Range		
Size		(Reference)		Speed	
				of	
in.	Ampere	ipm	Volts	Travel	Joint Detail
0.035	100-150	210-330	16-29	As Required	
					\[\] \[\]
					Opening
					Note: Post Opening - 0 1/2t

¹Weiding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-11 GMAW Stainless Steel

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240 Type 3XX

Coating Type: None Thickness: 10 Gauge

Material Form: Sheet - 3" x 6"

Filler Metal: ANSI/AWS A5.9, Class ER-3XX (F Number 6)

Weld Joint Detail: Square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 3G

Vertical Welding Progression: Down

Welding Procedure Specification (WPS) No.: QC7-93, C-11-V

Welding Technique: Single pass

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) - semiautomatic/automatic transfer mode --- short circuiting

Base Metal: Chromium and chromium nickel steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge to 0.281 in.

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Filter Metal: Alval/Avva Ab.a, (Firdinger o)

Current: dcep Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Positions: Flat, horizontal and vertical groove and fillet

Vertical Welding Progression: Up or Down

WPS Number	C-11	Supported by PQR No.(s) WRC¹, 071B, 072B, 073A, 077A, 078A, 079A²							
WPS Rev. No.	Original	WPS Rev. Date January 1994							
Code Reference ANSI/AWS D9.1, Sheet Metal Welding Code									
Variables									
Base metal AN	ISI/ASTM A167 o	or A240, Type 3X	<u> </u>	·					
Metal thickness	s 10 Gauge (0.14	406 in., 2.57 mm)							
Coating type M	None								
Joint preparati	on Shall be free	of loose scale, ru	st, grease or fo	reign matter					
Backing mater	ial None								
Position of wel	Position of welding 3G Vertical Welding Progression: Down								
Welding proce	ss GMAW								
Manual, semia	utomatic, or auto	omatic <u>Semiauto</u>	omatic						
Filler metal spe	ec. ANSI/AWS A	5.9							
Filler metal cla	ss ER3XX			····					
Electrical Char	acteristics deep)	El	ectrode Extension	1/4 to 3/8 in.				
Mode of transf	er Short circuit								
Shielding gas/	combination 90'	% Helium, 7.5% /	Argon, 2.5% Ca	rbon dioxide	· · · · · · · · · · · · · · · · · · ·				
Gas flow (CFH)	20-40 CFH				· · · · · · · · · · · · · · · · · · ·				
			Joining Proce	dure					
		Welding Power							
Filler	Current	Wire Feed	Voltage						
Metal	Range	Speed	Range						
Size	9-	(Reference)		Speed					
0.20		(**************************************		of					
in.	Ampere	ipm	Volts	Travel	Joint Detail				
0.035	100-150	210-330	16-20	As Required					
					5 10 ga.				
-		-			Opening				
]							
		į			Note: Root Opening = 0-1/2t				

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

AWS QC7-93 Supplement C Performance Test Description C-12 GMAW Stainless Steel

Code: ANSI/AWS D9.1

Welding Process: Semiautomatic gas metal arc welding (GMAW) Transfer Mode: Short circuiting

Base Material: ASTM A167 or A240 Type 3XX

Material Form: Sheet -- 3" x 6" Thickness: 10 Gauge

Filler Metal: ANSI/AWS A5.9, Class ER-3XX (F Number 6)

Weld Joint Detail: square butt, root opening (R) = 0 - 1/2 t. Where t = base metal thickness

Backing: None

Welding Position(s): 1G (Flat, See AWS D9.1, Fig 2 (A))

Vertical Welding Progression: Not applicable

Welding Procedure Specification (WPS) No.: QC7-93, C-12-F

Welding Technique: Single pass

Current: dcep Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Coating Type: None

Electrode Extension: 1/4 to 3/8 in.

Test Required: Visual inspection per AWS D9.1

Limits of Welder Qualification

Code: ANSI/AWS D9.1

Welding Process: gas metal arc welding (GMAW) — semiautomatic/automatic transfer mode — short circuiting

Base Metal: Chromium and chromium nickel steel (See ANSI/AWS D9.1)

Material Form: Sheet

Backing: With or without

Groove Weld Thickness: 16 Gauge to 0.281

Fillet Weld Size: Unlimited

Pipe and Tubing: Not applicable

Filler Metal: ANSI/AWS A5.9, (F Number 6)

Current: dcep

Shielding Gas: 90% Helium, 7.5% Argon, 2.5% Carbon

dioxide

Positions: Flat groove and fillet Vertical Welding Progression: Not applicable

WPS Number	C-12	Supported by	PQR No.(s) V	<u>VRC', 071B, 072B, 0</u>	373A, 077A, 078A, 079A ²			
WPS Rev. No.	Original			w	PS Rev. Date January 1994			
Code Reference	ANSI/AWS D	9.1, Sheet Metal V	Velding Code					
			Vasiablas					
			Variables					
Base metal Al	NSI/ASTM A167	or A240, Type 3X	×					
Metal thicknes	s 10 Gauge (0.1	1406 in., 2.57 mm)						
Coating type !	None							
Joint preparati	ion Shall be free	of loose scale, ru	ist, grease or fo	oreign matter				
Backing mater	rial None							
Position of we	iding 1G Flat		W	elding Progression	: <u>N/A</u>			
Welding proce	Welding process GMAW							
Manual, semia	utomatic, or au	tomatic Semiauto	matic					
Filler metal sp	ec. ANSI/AWS A	\5.9						
Filler metal cla	ISS ER3XX							
Electrical Char	racteristics dce	p	E	ectrode Extension	1/4 to 3/8 in.			
Mode of transf	er Short circuit							
Shielding gas/	combination 90	% Helium, 7.5% /	Argon, 2.5% Ca	irbon dioxide				
Gas flow (CFH) 20-40 CFH							
		·	Joining Proce	dure				
		Welding Power						
Filler	Current	Wire Feed	Voltage					
Metal	Range	Speed	Range					
Size		(Reference)	v.ag	Speed				
5.20		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		of				
in.	Ampere	ipm	Volts	Travel	Joint Detail			
0.035	100-150	210-330	16~20	As Required				
	1							
]					5 2 10 ga.			
					Root			
					Opening			
}	1				operary.			
					Note: Root Opening = 0-1/2t			

¹Welding Research Council, 345 East 47th Street, New York, New York 10017. ²Also on file at AWS Headquarters (Qualification and Certification Dept.).

			•	
			,	
			•	
		*		
	•			
			•	
•				

